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A B S T R A C T

In this paper, we propose a re-dispatch scheme for radial distribution grids hosting stochastic Distributed Energy
Resources (DERs) and controllable batteries. At each re-dispatch round, the proposed scheme computes a new
dispatch plan that modifies and extends the existing one. To do so, it uses the CoDistFlow algorithm and applies a
receding horizon control principle, while accounting for hard time computation constraints that impact on the
instantaneous update of a dispatch plan. CoDistFlow handles stochastic DERs and prosumers uncertainties via
scenario-based optimization and the non-convexity of the AC Optimal Power Flow by iteratively solving suitably
defined convex problems until convergence. We perform numerical evaluations based on real-data, obtained
from a real Swiss grid. We show that, with our proposed re-dispatch scheme, the daily dispatch tracking error
can decrease more than 80%, even for small battery capacities, and if re-dispatch is frequent enough, it can be
eliminated. Finally, we show that re-dispatch should be performed as often as the market allows and the per-
formance continues to improve.

1. Introduction and contributions

Stochastic Distributed Energy Resources (DERs) are increasingly de-
ployed in modern power distribution grids. However, due to their un-
certain and variable power injections, they can lead to the need of in-
stalling and activating large amounts of costly reserves [1]. Jointly
dispatching collections of stochastic DERs, loads and controllable batteries
may compress the amount of required reserves as it aims at avoiding the
scheduling and activation of balancing reserves during real-time operation
[2–4] and it is advocated, for instance, in Swissgrid’s grid code to improve
operations reliability [5]. When dispatching, the operator computes a
discrete sequence of power values at the Point of Common Coupling (PCC)
with the main grid, called the dispatch plan, which is committed with, for
instance, the day-ahead electricity market. The dispatch plan can be ob-
tained by solving an Optimal Power Flow (OPF) in which the battery
power injections as well as the electrical state of the grid constitute opti-
mization variables. According to [6], in order to compute an efficient
dispatch plan, the OPF should account for the uncertainties of DERs and
loads, as well as for accurate models of the grid/battery losses and the
associated constraints. In real time, while the realization of the uncertain
prosumption is being revealed, the batteries are being controlled so as to
track the committed dispatch plan [7,8].

However, when tracking a day-ahead dispatch plan during opera-
tion, depleted flexibility of the batteries can occur due to the accumu-
lated forecasting error. In this context, it is key to perform intra-day re-
dispatching by accounting for new information, i.e., recomputing the
dispatch plan for the upcoming time horizons considering updated
forecasts of stochastic generation and demand. This solution is pro-
mising for further compressing the scheduling and activation of costly
primary/secondary frequency control power reserves, thus enabling the
integration of more renewable generation.

In this paper, we propose a re-dispatch scheme for radial distribu-
tion grids with stochastic DERs and controllable batteries. Re-dispatch
is performed using a receding horizon control (RHC) principle and at
regular time intervals, it computes a new dispatch plan that modifies
and extends the existing one. At each re-dispatch round, we collect
updated information, which consists of (i) the currently observed state-
of-energy of the batteries and (ii) updated prosumption forecast sce-
narios. We use CoDistFlow [6] to solve iteratively a scenario-based non-
convex OPF problem and compute a new dispatch plan for a number of
consecutive time intervals that follow. In order to re-dispatch in a
computationally efficient way (i) we had to adapt the receding horizon
control principle, and (ii) it was necessary to perform a special design of
the optimization problem solved by the CoDistFlow.
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The uncertainty of loads and DERs is handled by applying scenario-
based optimization. Compared to its alternatives, robust optimization
and chance-constrained optimization, scenario-based optimization has
the following advantages: (i) it models properly the uncertainty of
stochastic resources [9] (e.g., in a non-parametric way), (ii) it allows for
general convex constraints, and (iii) it expresses any existing time
correlations. In this work, the scenarios consist of forecasted time-series
constructed based on historical and present knowledge.

CoDistFlow is chosen as the most suitable method for repeatedly
computing dispatch plans with scenario-based optimization. To the best
of our knowledge, CoDistFlow is the only algorithm in the literature for
solving a scenario-based OPF so that the solution satisfies the exact
power flow equations and the exact grid-security constraints for all the
scenarios. As it is shown in [6], existing second-order cone program-
ming OPF relaxation methods that yield exact solutions without sce-
narios, e.g., [10,11], might not provide exact solutions in case of sce-
nario-based optimization. In addition, common OPF solution
approaches that use sequential linearization of the power flow equa-
tions with sensitivity coefficients might have a slow convergence and
might lead to solutions with non-satisfactory performance [6]. Co-
DistFlow converges in few iterations, and the numerical evaluations
show that it provides a solution with very good performance [6]. This is
due to the linearization of the power flow equations that CoDistFlow
uses, which is a modified form of Simplified DistFlow so that it is exact
around a freely chosen operating point as well as a good approximation
under all operating conditions.

We apply a realistic model of battery losses in the context of energy
management applications. It represents the internal losses of the grid-
connected battery systems using equivalent lossy lines integrated in the
power flow model [6]. As opposed to efficiency-based methods, it does
not require the use of relaxations or binary variables. By treating
charge/discharge losses as grid losses, our model can be integrated
directly into the load flow problem and allows us to adopt an accurate
representation of batteries’ apparent power constraints.

We investigate the importance of re-dispatching by quantifying it
through the design of appropriate metrics based on existing reserve
markets and by performing evaluations on real data-sets. Specifically,
the numerical evaluations are performed on a real-life distribution
system, in Switzerland, composed of 34 buses, and the scenarios are
constructed with real prosumption data. By solving large-scale opti-
mization problems, we show that by re-dispatching with the proposed
scheme, the dispatch-plan tracking error, as well as the corresponding
cost, can almost cancel out even for small battery sizes. Moreover, we
show how our scheme can be used as a tool to determine the appro-
priate frequency of re-dispatching given the battery size and conversely.

The rest of the paper is organized as follows. Section 2 summarizes
the related literature. Section 3 provides the system model. In Section 4
we describe the proposed re-dispatch approach and in Section 5, we
solve the re-dispatch problem. Section 6 presents the evaluation results
and finally, Section 7 concludes the paper.

2. Related works on power distribution networks re-dispatch

Since forecasting errors cannot be avoided, while in some practical
cases good forecasts may be unavailable, re-dispatching is an emerging
need to increase the safe operational margins of the power grid in the
presence of intermittent DERs. In the literature, there exist several
works that perform re-dispatching for intra-day markets and real-time
operation of power grids, a synopsis of which is given next.

In [12], the authors propose an intra-day multi-period energy and
reserve pre-dispatch model and a real-time single time-step horizon re-
dispatch model. Contrary to our approach, prosumption uncertainty is
not considered and since the re-dispatch is instantaneous, it does not
account for updates in the future forecasts. In the same spirit, [13]
performs a single time-step horizon re-dispatching but without con-
sidering energy storage systems. The prosumption uncertainties are

handled via chance constraints integrated within a second-order cone
programming OPF. Comparative evaluations show the benefits for
system reliability of accounting for the uncertainty. However, the
chance constraints are approximated based on a known parametric
probability distribution of the uncertainties, contrary to our proposed
approach, which by employing scenario-based optimization, makes no
assumptions on their distribution.

RHC is extensively used in the literature for developing dispatching
and re-dispatching schemes. One of the earliest approaches, [14],
proposes an RHC-based economic dispatch scheme for a power grid
without energy storage, while ignoring grid losses and replacing the
uncertain quantities with point forecasts. Baker et al. [15] develops a
distributed RHC scheme for storage control in a power grid, without
also considering the grid losses or uncertainties. The work in [7] ob-
tains a day-ahead dispatch plan with scenario-based optimization and
an RHC-based scheme for real-time control. It neither models the grid
nor accounts for the grid constraints. In [16], a real-time RHC-based
power control scheme is proposed for a grid with DERs and energy
storage using scenario-based optimization for the uncertainty but
without modeling the grid. Dall’Anese et al. [17] develops a chance-
constrained RHC scheme for storage control in the presence of DERs by
applying linearizations of the power flow equations with sensitivity
coefficients.

Several papers employ RHC-based approaches for controlling mi-
crogrids. For instance, the schemes proposed in [18,19] are based on
RHC for operating a microgrid with the aim of minimizing its operating
costs. [18] applies scenario-based optimization, whereas [19] replaces
the uncertain quantities with point forecasts. In [20], RHC and sce-
nario-based optimization are jointly applied for the operational control
of islanded microgrids using the DC approximation of the power flow
equations and assuming no energy storage losses. Raimondi Cominesi
et al. [21] develops a two-layer RHC-based control scheme for a mi-
crogrid in two different time-scales. The power grid and the associated
constraints are not modeled, whereas uncertainties are considered only
in the fast time-scale control via chance constraints. Finally, Novickij
and Joos [22] brings upfront the computational complexity issues of the
RHC approaches for economic dispatch and unit commitment and tries
to handle them by decoupling the two problems. However, for effi-
ciency purposes, it linearizes the cost functions and it does not model
the power grid.

RHC is a powerful tool for controlling power grids while con-
tinuously adapting to their evolving, a-priori unknown, state. However,
it is computationally demanding, especially in presence of un-
certainties, non-convexities and long time-horizons. Thus, existing ap-
proaches that use it make simplifications on the grid modeling and the
uncertainty modeling, as well as limit the horizon lengths. In this work,
we leverage CoDistFlow and we develop a complete RHC-like scheme
for intra-day re-dispatching that considers accurate grid modeling, ac-
counts properly for the uncertainty using scenario-based optimization
and handles efficiently applicability issues due to computational com-
plexity.

3. System model, battery model and notation

We consider a balanced and transposed radial distribution grid. The
PCC is at index 0 and is assumed to be the slack bus. In view of these
working hypotheses, distribution lines and, in general, branches are
represented by their single-phase direct-sequence equivalent π models
(Fig. 1(a)). Note that the same model can be used to represent other
devices connected between nodes (e.g., series voltage regulating
transformers)1. The node at the top of line ℓ closer to the PCC, is de-
noted as up(ℓ), and the node at the bottom as ℓ (Fig. 1(a)). We assume,

1We remind that taking into account shunt elements is particularly suitable
for underground cables used in urban contexts.
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without loss of generality, that there is only a single bus – the bus with
index 1 – connected to the PCC. The N × N matrix G is the adjacency
matrix of the oriented graph of the network excluding the PCC, i.e.,

=G 1k, for two buses k, ℓ ≠ 0, if =k up( ), otherwise =G 0k, .
On each line ℓ (Fig. 1(a)), let (i) = +S t P t Q t( ) ( ) j ( )d d d be the direct

sequence complex power fed from the bus up(ℓ) at time t and for sce-
nario d, (ii) = +z r xj and bℓ be the direct sequence longitudinal
impedance and shunt susceptance of the branch ℓ, (iii) f t( )d be the
square magnitude of the direct sequence current flowing through zℓ at
time t and for scenario d. I is the ampacity limit of branch ℓ. On each
bus/node i (Fig. 1(a)), (i) v t( )i

d is the square magnitude of the direct
sequence voltage at time t and for scenario d, (ii) v v, are lower and
upper bounds on v t( ),i

d i.e., v v t v( ) ,i
d2 2 (ii) = +s t p t q t( ) ( ) j ( )i

d
i
d

i
d is

the complex power injection without the battery power injections
( >p t( ) 0,i

d >q t( ) 0i
d indicate consumption) at time t and for scenario d.

= +S t P t Q t( ) ( ) j ( )DP DP DP stands for the dispatched complex power
at PCC, at time t. At PCC the voltage is assumed fixed, =v t( ) 1d

0 pu, ∀t,
d.

Battery model. In order to account for the internal losses of a bat-
tery, we employ the resistance-based model in [6]. The model captures
injection and extraction losses through equivalent circuit models2. This
model is more realistic than, for instance, the commonly adopted
constant efficiency-based one, that fails in capturing the nonlinear
power-dependent losses of all the components of the power chain (i.e.,
battery, power converter, and step-up transformer) due to their internal
impedance. The adopted equivalent circuit model inherently accounts
for this and is particularly appealing since it can be seamlessly in-
tegrated into the load flow problem with a virtual node and a virtual
line. The battery model is illustrated in Fig. 1(b). Specifically, for a
battery interfaced to bus i via power conversion devices: (i) a new
virtual bus, ℓ, is added and connects to bus i via a virtual purely resistive
line, ℓ ( = =z r x, 0), where =i up( ), (ii) we connect a lossless
battery with same capacity and rated power to the virtual bus ℓ, and
(iii) we connect a reactive-power resource to bus up(ℓ). Therefore, we
represent a battery (in this case supposed to be interfaced with a grid
following converter that has negligible losses) by two controllable

resources, namely, the lossless battery at virtual bus ℓ and the reactive-
power resource at bus up(ℓ). Moreover, the internal losses of the battery
are equal to the power losses on the purely resistive line and the state-
of-energy (SoE) of the battery is equal to the one of the lossless battery.
In the Appendix, we explain how the resistance of the newly added
virtual line can be assessed experimentally and we provide an experi-
mental validation of the resistance-based battery model. Note that we
impose neither ampacity constraints to the virtual line, nor voltage
constraints at the virtual node, because both are only part of the battery
model. For a battery at virtual bus ℓ, we define

• SoE t( )d the state-of-energy at time t and for scenario d,
• SoEB, the energy capacity, i.e., t0 SoE ( ) SoE ,B

d
B, ,

• p t( )B
d
, the charging (p t( ) 0B

d
, ) or discharging (p t( ) 0B

d
, ) power

at time t and scenario d, without including the battery losses,
• the reactive power of the reactive power source,
• sB

R
,up( ) the battery’s converter rated power.

If there exist NB batteries in the grid, the total number of buses
increases to +N NB and the admittance matrix is updated accordingly.
Finally, after representing all batteries with their models, the battery
capacity is non-zero only at the virtual nodes i.e., those within the set

+ … +N N N{ 1, , }B .
Collective notation. We define = …P t P t P t P t( ) [ ( ), ( ), , ( )]d d d

N
d T

1 2 the
active power flow values for all lines. Similarly, we define the vectors:
Qd(t) for the reactive power flows, vd(t) for buses’ voltage square
magnitude and pd(t), qd(t), p t( ),B

d q t( ),B
d for the bus active and

reactive prosumption injections and battery active and reactive
power values, respectively. In Section 5.1, for the needs of
CoDistFlow, we use the correction terms p t^ ( ),d q t^ ( ),d v t^ ( )d and
the approximation terms v t˜ ( )d (for line ℓ, scenario d and time t). Fur-
thermore, = …P t p t p t^ ( ) [^ ( ), , ^ ( )] ,

d d
N
d T

1 = …Q t q t q t^ ( ) [^ ( ), , ^ ( )] ,
d d

N
d T

1 =V t^ ( )
d

…v t v t[^ ( ), , ^ ( )] ,d
N
d T

1 and = …V t d v t v t˜ ( , ) [˜ ( ), , ˜ ( )]d
N
d T

1 . We introduce
more compact notations for the electrical state of the grid E(t, d),
the corrections C(t, d), the load injections s(t, d) and the
battery power values sB(t, d), as =E t d P t Q t v t( , ) [ ( ); ( ); ( )],d d d C

=t d P t Q t V t( , ) [ ^ ( ); ^ ( ); ^ ( )],
d d d

=s t d p t q t( , ) [ ( ); ( )],d d sB =t d( , )
p t q t[ ( ); ( )]B

d
B
d . To conclude: S denotes complex power flows for all lines,

scenarios and times, v denotes voltage square magnitude for all buses,
scenarios and times, SDP stands for the dispatched complex power for all
times, and f for the current square magnitude through the longitudinal
impedances for all lines, scenarios and times.

4. The re-dispatch approach

A dispatch plan is a sequence of T complex power values at
the PCC, corresponding to T consecutive time intervals of
duration Δt each, i.e, a dispatch plan computed at time τ is

+ … +S S S T{ ( ), ( 1), , ( 1)}DP DP DP . T is called horizon of the dis-
patch plan. The dispatch plan is computed ahead of time, i.e., before the
realization is revealed, by solving a non-convex OPF; the details of this
computation are given in Section 5.

Our proposed re-dispatch approach is as follows. Every R time in-
tervals, we compute a new dispatch plan, which modifies and extends
the existing dispatch plan. It is based on the most recent SoE of the
batteries and the most recent prosumption forecasts. This computation
cannot be done instantly and new values of the dispatch plan require a
delay before being committed. Therefore, we use a time margin Tfixed,
which upper bounds the time required to compute the new dispatch
plan; then, for the next Tfixed time intervals, we impose that the new
dispatch plan uses the values inherited from the previous dispatch plan.
Thus, although the computation of the new dispatch plan has
not been yet completed, the values for the next Tfixed time intervals are
already known and can be fed to the real-time algorithm that controls
the grid operation. Specifically, given an earlier dispatch plan,

Fig. 1. Line (a) and Battery (b) models.

2 For the power converter (with which the battery is interfaced to the grid),
the circuit model is a Norton or Thevenin one depending on the converter’s
operation as grid-following or grid-forming, respectively. For the battery a
series resistance is added to model its losses as described in the following.
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Fig. 2. Illustration of our re-dispatch approach for parameter values =T 10 and =R 4. During the grid operation, the real time control algorithm takes battery charge
and discharge power decisions in a finer time-scale with the aim of following the dispatch plan (green dotted curly line).
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+ … +S S S T{ ( ), ( 1), , ( 1)},DP DP DP a re-dispatch performed at time
+ R is the computation of a new dispatch plan

+ + + … + +S R S R S R T{ ( ), ( 1), , ( 1)},DP DP DP subject to the
constraints + = +S R S R( ) ( ),DP DP + + =S R S( 1)DP DP

+ + …R( 1), , + + = + +S R T S R T( 1) ( 1)DP DP
fixed fixed . We

assume that +T R Tfixed and Tfixed ≤ R.
Figs. 2 and 3 illustrate the non-trivial interplay of successive re-

dispatches. Observe that, since re-dispatch is performed after R inter-
vals, the last T R Tfixed dispatch plan values are tentative. Even
though such values will not be implemented, it is beneficial to compute
them, i.e., to have > +T R Tfixed. This is because the presence of storage
in the grid introduces dependencies across time intervals, which require
a sufficient lookahead when computing a dispatch plan.

Our approach differs from the common application of the receding
horizon control principle, which implicitly assumes that computation
time is negligible and that newly computed setpoints are immediately
available. Such an approach is not directly applicable here due to the
complexity of solving the AC OPF. An alternative approach would be to
compute the new dispatch plan ahead of time in order to allow suffi-
cient time for computation. Specifically, a re-dispatch performed at
time + R would be the computation of a new dispatch plan,

+ + + + + …
+ + +

S R T S R T
S R T T

{ ( ), ( 1), ,
( 1)},

DP DP

DP
fixed fixed

fixed

which will be de-

ployed at time + +R Tfixed. This would be much less accurate because
the SoE of the battery at time + +R Tfixed is not yet observable.

5. Solving the re-dispatch with CoDistFlow

In this section, we focus on the efficient computation of the dispatch
plan at each re-dispatch round. To do so, we formulate and solve a
scenario-based non-convex AC OPF for a radial distribution network
with stochastic renewable energy sources and battery storage. As
mentioned in the introduction, (i) scenario-based optimization handles
the prosumption uncertainty, and (ii) we solve the non-convex AC OPF
using the CoDistFlow algorithm [6] that provides a solution satisfying
the nonlinear power flow equations and the security constraints. The
scenarios are constructed based on probabilistic forecasts [9] (see
Section 6.2 for details), which are obtained using historical data and
present knowledge at the time the OPF is solved. First, we formulate the
AC OPF that is solved at τ. We consider the following constraints. Note
that t is the time index and + … +t T{ , 1 , 1}.

Power flow equations ∀d, ∀ℓ, ∀t

= + + +
=

P t P t p t p t r f t( ) ( ) ( ) ( ) ( ),d

k
k
d d

B
d d

G: 1
,

k (1)

= + + +

+
=

Q t Q t q t q t v t v t b

x f t

( ) ( ) ( ) ( ) ( ( ) ( )) /2

( ),

d

k
k
d d

B
d d d

d

G: 1
, up( )

k

(2)

= +f t S t j
v t b

v t( ) ( )
( )

2
/ ( ).d d

d
dup( )

2

up( ) (3)

Voltage constraints, ∀d, ∀ℓ, ∀t

R= + +v t v t z S t jv t b z f t( ) ( ) 2 * ( ) ( )
2

( ),d d d d d
up( ) up( )

2
(4)

=v t v v t v( ) 1, ( ) .d d
up(1)

2 2 (5)

Ampacity constraints, ∀d, ∀ℓ, ∀t

+P t Q t
v t

I( ( )) ( ( ))
( )

,
d d

d

2 2

up( )

2

(6)

+ +
+

P t r f t Q t x f t

v t
I

( ( ) ( )) ( ) ( )

( )
.

d d d d v t v t b

d

2 ( ( ) ( ))

2

2

2

d d
up( )

(7)

Battery constraints, ∀d, ∀ℓ, ∀t

+ = +t t p t tSoE ( 1) (1 )SoE ( ) ( ) ,B
d

D B
d

B
d

, , , (8)

a t aSoE SoE ( ) (1 )SoE ,B B B
d

B B, , , (9)

+P t q t s( ( )) ( ( )) ( ) ,d
B
d

B
R2

,up( )
2

,up( )
2

(10)

=SoE (0) SoE ,B
d

B
I

, , (11)

where (i) 0 ≤ aB ≤ 1 is a constant parameter used to define a margin on
the SoE lower and upper bounds, (ii) SoEB

I is a vector with dimension
+N NB and its element, SoE ,B

I
, is the observed SoE of the battery at bus

ℓ at time τ, and (iii) αD is the coefficient of self-discharge during an
interval with duration Δt. αD is computed so that the battery self-dis-
charges by 1% during a day, i.e., =D

t0.01
24 [23]. Eq. (10) expresses the

battery apparent power constraint. It considers the battery active power
including the battery losses, since = +P t p t f t r( ) ( ) ( )·d

B
d d
, . Eq. (10) is

more accurate than the corresponding constraint in [6] that does not
consider the battery losses. Note that we do not consider terminal
constraints on the SoE. This is not required for our re-dispatch scheme,
where the dispatch plan horizon T is fixed and higher than the duration
of the re-dispatch round R. Obviously, the terminal SoE at one re-dis-
patch round becomes an intermediate one for the next re-dispatch
round.

Fixed dispatch plan constraints: We denote with S DP
fixed a vector of

length Tfixed with elements the dispatch plan values inherited from the
dispatch plan of the previous re-dispatch round (Section 4). Then, we
introduce the following constraints

= + = +
=

S S S S S T
S T

( ) (1), ( 1) (2), ( 1)
( ),

DP DP DP DP DP

DP
fixed fixed fixed

fixed fixed (12)

which will be included in the OPF in order to assign the inherited
dispatch plan values to the Tfixed first entries of the new dispatch plan.

The set of constraints (1)–(12) is non-convex due to Eqs. (3), (6) and
(7). In addition, we define the following objective function:

+ +

+ + +

w t t

w Q t w P t

w P t w P t P t Q t Q t

max(E SoE ( ), 0, SoE ( ) E )

| ( )| | ( )|

( ) (| ( ) ( )| | ( ) ( )|),

d t
d B B

d
B
d

B

d t
d

d

d t
d

d

d t
d

d

d t
d

d DP d DP

1
, ,

, , , ,

2
,

1 3
,

1

4
,

1 5
,

1 1

(13)

which is quite generic including diverse sub-objectives weighted by the

Fig. 3. At each re-dispatch round, 1 value is inherited from the previous
computation (yellow part of the dispatch plan), 4 values are newly computed
and finally applied (blue part of the dispatch plan) and the remaining values are
tentative and will be replaced by newly computed ones in the next re-dispatch
rounds (grey part of the dispatch plan).
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non-negative constants = …w i, 1, , 5i . The first sub-objective en-
courages the battery SoE to lie withing the preferred range [E , E ],B B, ,
where a aSoE E E (1 )SoEB B B B B B, , , , . Due to the constraint
(9), a feasible battery SoE will lie in a a[ SoE , (1 )SoE ],B B B B, , but
possibly outside [E , E ]B B, , . If the SoE is outside [E , E ]B B, , the objective
function increases by the corresponding penalty given by the first term.
The second sub-objective minimizes the reactive power at the PCC
(Q t| ( )|d

1 ) that serves the purpose of maximizing the power factor at the
PCC. The combination of the third and the fourth sub-objectives mini-
mizes the cost of the power exchanged with the main grid. Indeed,
w w4 3 can be interpreted as the price received when exporting power
to the upstream power grid and +w w3 4 as the price paid when im-
porting power to the local distribution grid from the upstream grid. The
fifth sub-objective minimizes the deviation of the realized slack-bus
power for each scenario from the dispatch plan value. A high enough
positive value should be assigned to w5 in order to derive an optimal
dispatch plan that, with high probability, will be followed in the real
time operation with a small regulation error (e.g., if participating at the
market with our feeder as the dispatchable resource).

Note that the Distribution System Operator (DSO) will adjust the
weights of the sub-objectives based on each one’s importance in the
specific application of interest. For instance, in our evaluations, where
the purpose is to compute dispatch plans, we set w5 to be much higher
value than the remaining weights. Weights can be also zero, in which
case the corresponding sub-objectives cancel out. Finally, the objective
function is a weighted average over all scenarios, where the weight λd is
the probability of occurrence of scenario d, with = 1d d .

The non-convex AC OPF is formulated as follows:

s t t dmin (13), . . (1) (12) , , .
S p q v S f, , , , ,B B

DP (14)

At each re-dispatch round, we compute an updated SDP by solving
the non-convex problem (14) in an efficient way, using CoDistFlow.
When solving (14) we should account for the most recently observed
batteries’ SoE and the most recently computed prosumption scenarios
so that the derived dispatch plan adapts to the current information
better than the previously computed one. Next, for completeness pur-
poses, we briefly describe CoDistFlow.

5.1. CoDistFlow

CoDistFlow [6] consists of two modules, namely: Improved Dist-
Flow (iDF) and Load Flow (LF). These two modules are applied se-
quentially and iteratively until convergence.

Improved DistFlow (iDF) and Load Flow (LF) modules. The iDF
module is given as =S S v p q s C V S[ , , , , ] iDF( , , ˜ , SoE , ).DP

B B B
I DP

fixed We
use S′, v′ to differentiate the output of iDF from the output of LF. iDF
solves a problem similar to (14), but, with the following difference. It
introduces the constant correction terms p t^ ( ),d q t^ ( ),d v t^ ( )d that replace
the variables r f t( ),d x f t( )d and z f t( ),d2 respectively, in Eqs. (1),
(2), (4) and (7). In addition, iDF introduces the constant approximation
terms, v t˜ ( ),d which replace the voltage square magnitude variables,
v t( ),d in Eqs. (6) and (7). With given constant values of the correction
and approximation terms, C V, ˜ , and with the above replacements, the
problem (14) becomes convex and can be efficiently solved.

The values of the correction and approximation terms are com-
puted/updated by the LF module, by solving a full AC load flow (Eqs.
(1)–(4)) for a specific time and scenario. The LF module is given as

=S t d v t d C t d V t d p t d q t d s t d[ ( , ), ( , ), ( , ), ˜ ( , )] LF( ( , ), ( , ), ( , )).B B The
batteries are also considered as PQ buses with injections computed by
iDF at the previous iteration.

CoDistFlow algorithm. CoDistFlow is given in Algorithm 1. The
superscript (k) denotes the iteration k of CoDistFlow and the index j in
lines 7–10 the jth element of the corresponding vectors. It takes as in-
puts: (i) the prosumption forecast scenarios that are updated at the time
of re-dispatch, τ, (ii) the batteries SoE as observed at time τ, (iii) the
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inherited dispatch plan values. It outputs the optimal dispatch plan and
the battery trajectories. According to [6], at convergence the obtained
solution satisfies the exact (AC) power flow equations and the exact
operational constraints (i.e., Eqs. (1)–(11)) within the tolerance bounds
imposed by the convergence criterion.

6. Evaluation results

We perform numerical evaluations and comparisons of the proposed
re-dispatch scheme. We set =t 0.25 h, following the paradigm of the
time-scales used in the energy markets, e.g., [24]. In addition, we set

=T 96, and R variable in the range 8–24 to assess the impact of the
duration of a re-dispatch round on the performance. We compare the
proposed re-dispatch scheme, with a scheme where the dispatch plan is
computed just before the day it is applied (i.e., it is not further updated
intra-day). We call this scheme “No Re-dispatch”.

The simulations are performed for a real Swiss distribution grid, the
topology of which is shown in Fig. 4. It consists of 34 buses, including
the PCC. There is one battery system connected to bus 1, with max-
imum apparent power 6 MVA and capacity 3 MWh (three-phase), and
another battery system connected to bus 23 with the same character-
istics. The buses 34 and 35 are virtual buses for the battery models. The
base power is 25 MVA and the base voltage is 21 kV. We set =v 0.9 pu,

=v 1.1 pu, and the initial SoE of all batteries equal to 1 MWh, for all
scenarios.

We apply =D 80 scenarios (except when differently mentioned),
which have been constructed based on historical data, as described in
Section 6.2. Each scenario consists of power prosumption values at all
buses, every Δt, for a 10-day period. By choosing this D, we accounted
for as much detailed information of the uncertainty as possible while
maintaining a manageable computational complexity. Note that we
tackle large-scale problems (with =N 36, =T 96, =D 80 and several
decision variables per node, time and scenario), with much larger di-
mensions than in the literature e.g., [16,18,20]. We use Matlab with the
Yalmip toolbox and the Gurobi solver.

In addition, we assign = = = = =w w w w w 1,1 2 3 4 6 =w 105 and
=a 0.1B . w5 is chosen much larger than the other weight values since

our main objective is dispatchability. Also, =E 0.15·SoEB B, , and
=E 0.85·SoE ,B B, , ℓ ∈ {34, 35}. We set =T 1fixed (except when differ-

ently mentioned) since for the grid considered in our evaluations,
CoDistFlow takes a few minutes to run at each re-dispatch round. A
real-time control algorithm takes battery charge and discharge power
decisions every Δt, aiming to minimize the error in following the dis-
patch plan. Also, it does not discharge/charge a battery more than
10%/90% of its capacity.

6.1. Evaluation metrics

Our primal goal is to provide dispatchability. In the following, we
introduce our evaluation metrics that quantify how well we achieve this

goal. The fifth term in the objective function (13) serves as a proxy of
these metrics in the optimization problem solved by CoDistFlow.

Let P1(t) be the realized power at the PCC at time interval t, when
the true prosumption is revealed and the battery power decisions are
applied (after being computed by the real-time control algorithm). The
dispatch plan power error at t, denoted as DPE, is defined as

=DP t P t P t( ) ( ) ( ).E
DP

1 (15)

When =DP t( ) 0,E we say that the dispatch plan can be followed at t.
Several energy markets such as the Fingrid’s one [24] measure

power imbalances every =t 0.25 h, and impose (i) balancing costs on
the hourly energy mismatch, and (ii) frequency containment reserve
costs for the power imbalance every Δt. Below, we compute the cost of
not following the dispatch plan based on this paradigm. First, we define
the per hour energy mismatch at the PCC with respect to the dispatch
plan. Let us denote as …t {0, 1, 2, }h the index of hours, and assuming
that 1/Δt is an integer, we define

=
=

+
DE t DP t t( ) ( ) .E h

t t t

t t t

E
/

/ 1/

h

h

(16)

When DEE(th) > 0, the required energy at hour th exceeds the
planned one and we need to pay up-regulation costs [24], at price +.
Similarly, when DEE(th) < 0, we pay down-regulation costs, at price .
Second, in both cases, we additionally consider the price-to-pay for the
frequency containment reserves, denoted as χC. Thus, the cost at th is:

= ++

=

+
DP t DE t DE t t DP t( ) max{ · ( ), · ( )} · ( ) .Cost h E h E h

C

t t t

t t t

E
/

/ 1/

h

h

(17)

We use Fingrid’s market data [24] and, specifically, we apply the
average values of the last three months of 2018 equal to =+ 56.22 €
/MWh, = 45.97 € /MWh, = 18.10C € /MWh (this choice is dic-
tated by the impossibility to collect Swiss market data).

Assume T hours of grid control in total. Our evaluations are per-
formed for a 10-day period, thus, =T 240. We define the average per
day energy mismatch at the PCC, CDEE, and the corresponding cost per
day, CDPCost, as

= =
= =

CDE
T

DE t CDP
T

DP t24 ( ) , 24 ( ).E
t

T

E h Cost
t

T

Cost h
0

1

0

1

h h (18)

6.2. Day-ahead and intra-day forecasts

This section describes the computation of forecasts and forecast
scenarios. Although not a contribution in this paper, their availability is
essential for evaluating the performance of the re-dispatch approach.
The forecasting engine relies on ARMA models. Their order is chosen by
evaluating the partial autocorrelation for the auto-regressive term and
autocorrelation for the moving average, following conventional

Fig. 4. Illustration of the real Swiss grid used for our numerical evaluations. The squares indicate the virtual nodes added for the battery models. The lossy batteries
lie at nodes 1 and 23.
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practices for their identification. They are 36 (with non-zero coeffi-
cients at lags 1, 24, 25 and 36) and 4. The order of ARMA models at the
various buses is the same, but their parameters are estimated for each
bus individually. ARMA models are used to generate point predictions
for the horizon T. Forecasts are updated every 2 h. The variance of the
point predictions is used to build parametric probabilistic forecasts in
the form of probability density functions (PDFs); the value of the var-
iance (normalized with respect to the nominal power of each bus) over
all buses and all intervals of the horizon lies in the range 0.03%–3.2%
per unit.

Forecast scenarios are generated with the method described in [9],
briefly summarized hereafter for clarity. It relies on the intuition that, if
predicted PDFs are reliable, calculating the values of the PDF for the
realizations lead to uniformly distributed series that can be transformed
in Gaussian multivariate random variables (i.e., by applying the profit
function) and can be tracked by identifying the associated covariance
matrix. The covariance matrix is then used to generate multivariate
Gaussian distributed scenarios with off-the-shelf libraries (e.g., mvnrnd
in Matlab). The random sequences are transformed in the final forecast
scenarios by, first, applying the inverse probit function and, finally, the
inverse predicted PDFs. Temperature is not considered as a regressor as,
in this case, there are no electric-thermal loads.

6.3. Evaluation of the proposed re-dispatch scheme on real data sets

In this section, we evaluated our re-dispatch scheme for different
values of the parameter R. The results are shown in Fig. 5 and in
Table 1.

Table 1 compares the CDEE and CDPCost values, as well as the
characteristics of the DEE values among all cases. Re-dispatching via our
proposed scheme reduces significantly the error in following the dis-
patch plan in real-time. Specifically, if =R 24, CDEE reduces more than
4.5 times. When =R 16, CDEE reduces more than 32 times and with

=R 8, it reduces drastically and almost cancels out. Moreover, the 98%
percentile of DEE is drastically reduced; if =R 16 or lower, it becomes
very close to zero. CDPCost shows the same trends with CDEE. Notice that
lack of re-dispatching can lead to significant costs along time and across
multiple feeders (here, we account for a single feeder). For instance, in
this case, for a single feeder, the expected yearly cost is 24,696 €
compared to 799.2 € that it would have been if we were re-dispatching
every 4 h. If considering that a small city, such as Lausanne with
150,000 inhabitants, has 50–60 feeders, this cost can reach
1,234,800–1,481,760 €, which is much more than a cost of
39,960–47,952 € if we were re-dispatching with =R 16.

Fig. 5(a) shows the DPE values for all real-time intervals, for
schemes without and with re-dispatch. Re-dispatch reduces the number
of real-time intervals when dispatch-plan tracking fails. In Fig. 5(b), we
compare the cdf of DPE for all schemes. The maximum value of DPE

decreases significantly with re-dispatch: for No Re-dispatch it is equal to
736.39 kW and for Re-dispatch it is 453.64 kW with =R 24, 405.24 kW
with =R 16 and 0.365 kW with =R 8. Thus, when re-dispatching the
required power capacity reserves are smaller.

Finding 1: If we do not re-dispatch, the daily dispatch plan tracking
error (CDPE) and associated cost (CDPCost) may become considerably
large, especially at a city level that consists of numerous dispatchable
feeders. On the contrary, re-dispatch can accurately track the dispatch
plan; if re-dispatching every 6 h, the daily dispatch plan tracking error
and associated cost decrease by around 80%, if re-dispatching every 4 h
they can reduce more than 30 × and if re-dispatching every 2 h they
vanish.

Finding 2: We should re-dispatch as often as the market allows and
the CDPCost continues to reduce. For example, in the examined grid, it is
not worth re-dispatching more frequently than every two hours, since at
this frequency CDPCost is already almost zero.

In Fig. 5(c) and (d), for better illustration purposes, we focus on

times between =t 800r and =t 960r . Fig. 5(c) and (d) compare the
dispatch plan and the realized power, P1, at the PCC without and with
re-dispatch. By comparing Fig. 5(a) with Fig. 5(c) and (d), we observe
that the error is just one order of magnitude smaller than the PCC
power. Therefore it is important to reduce it. Finally, failures in fol-
lowing the dispatch plan are due to depleting the flexibility of the
batteries. Fig. 5(e) and (d) present the SoE of the batteries at the virtual
nodes 34 and 35. When the batteries are both full and the generation is
greater than the consumption, or when they are both empty and the
consumption is greater than the generation, there is a failure in fol-
lowing the dispatch plan.

Let us focus on the spike before the time interval 950 in Fig. 5(d).
This spike is due to three reasons, (i) an increased demand, (ii) for both
batteries, the SoE is at the lowest possible level just before the spike
(Fig. 5(e) and (f)), and (iii) the battery at the virtual bus 34 starts
charging (Fig. 5(e)). Therefore, since the batteries cannot discharge, the
demand should be satisfied by importing power from the main grid. In
addition, the imported power further increases in order to charge the
battery so as to better accommodate the future grid operation.

Finding 3: Re-dispatch allows for accurately tracking the dispatch
plan in real-time, even if it has spikes, i.e., just before the time interval
950 in Fig. 5(d). On the contrary, in Fig. 5(c) where we do not re-
dispatch, the dispatch plan tracking fails for the corresponding time
interval although there is no spike.

Next, we vary the number of scenarios, D, and study its impact on
the time complexity and performance of the proposed re-dispatch
scheme. The results are summarized in Table 2. Time complexity refers
to the time that CoDistFlow requires to compute an updated SDP at a re-
dispatch round and does not depend on R. We observe that the time
complexity increases with the number of scenarios. In the cases ex-
amined, it is less than 10 min; hence we choose =T 1fixed that corre-
sponds to 15 min. As a result, re-dispatching every 2 h for canceling out
errors and costs (Table 1) is totally possible as far as time complexity is
considered for the examined grid. In general, the error values, CDEE, are
smaller for larger D. However, introducing re-dispatch leads to a much
larger improvement in CDEE than increasing the number of scenarios of
the No Re-dispatch scheme.

Finally, we vary the value of Tfixed. A higher value of Tfixed allows for
solving an optimization problem with higher computational complexity
at each re-dispatch round. The computational complexity increases by a
significant increase in the number of scenarios. In Fig. 6, we observe the
following:

• If we re-dispatch every 2 h (i.e., =R 8), CDPE is almost stable when
varying Tfixed from 1 to 6. In other words, if e.g., the computational
complexity of updating the dispatch plan is 1.5 h, re-dispatching every
two hours with the proposed re-dispatch scheme shows almost the same
performance as if there is a very small computational complexity.

• If we re-dispatch every 4 or 6 h, CDPE increases almost linearly
with Tfixed. If the dispatch plan is fixed for the first 2.5 h (i.e.,

=T 10fixed ), then the CDPE attains a value double than for =T 1fixed .
• In general, the impact of Tfixed on the performance can be char-

acterized as small. Observe that the CDPE for =T 6fixed and =R 8 is still
much lower than the CDPE for =T 1fixed and =R 16 or 24. Similarly, the
CDPE for =T 10fixed and =R 16 is much lower than the one for =T 1fixed
and =R 24.

• Re-dispatching more often, if the market allows, is beneficial for all
computational complexity values (as long as they are appropriately
bounded, i.e., Tfixed < R according to the assumptions in Section 4).

Finding 4: If re-dispatch is frequent (i.e., =R 8), the performance of
our re-dispatch scheme is not affected by the computational complexity
of updating the dispatch plan. If re-dispatch is not very frequent (i.e.,

=R 12 or 24), the performance of our re-dispatch scheme deteriorates
linearly with the computational complexity of updating the dispatch
plan.
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6.4. Study of the proposed re-dispatch scheme with varying battery size

In this part, we evaluate the effect of battery size on our scheme.
The battery positions remain the same. Fig. 7 shows the results. The

horizontal axis represents the sum of the two battery sizes. The CDPCost

values decrease as the battery size increases, since a larger battery
provides more flexibility to both the re-dispatch and the real-time

Fig. 5. SoE and dispatch plan error comparisons. (a), (b) We observe that if re-dispatching more frequently the errors decrease. However, at the threshold value
=R 8, the errors are negligible; hence, it is not worth to re-dispatch more frequently. (c)–(f) A failure in tracking the dispatch plan emerges when both batteries have

a very low or a very high SoE.

Table 1
Comparisons of CDEE, DEE [kWh], CDPCost [€ ].

Scheme CDEE 98% perc. DEE CDPCost

No Re-dispatch 978.8 400.91 68.6
=R 24 209.53 249.51 15.57
=R 16 29.95 0.0325 2.22
=R 8 0.15 0.0242 0.0095

Table 2
Comparisons w.r.t. the number of scenarios.

D CDEE [kWh] =R 24 CDEE [kWh] No Re-dispatch Time complexity (min)

5 300.44 1032 0.35
15 236.4 996.92 1.3
30 234.37 992.01 4
50 223.78 987.41 6
80 209.53 978.8 9
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control algorithms. The improvement that re-dispatch brings compared
to No Re-dispatch is even more larger for larger battery capacities. For
example, for small battery capacities, re-dispatch with =R 24 reduces
the CDPCost (compared to No Re-dispatch) by 30–64%, whereas, for
larger battery sizes, the reduction reaches up to 80% or more. In ad-
dition, we can make the following important observations.

First, with re-dispatch, CDPCost (and CDEE correspondingly) cancels
out for practical battery sizes, e.g., 3 MWh if =R 8, 6 MWh if =R 12
and 12 MWh if =R 24. On the contrary, when there is no re-dispatch,
CDPCost decreases with an extremely small rate with respect to the
battery size and thus, its elimination requires unrealistically large
battery sizes. Note that the value of CDPCost without re-dispatch for a
battery size 30 MWh is the same as the value of CDPCost with re-dispatch
for a battery size 3 MWh.

Therefore, re-dispatch, if allowed by the market, should be pre-
ferred compared to increasing the battery size. For example, for a
battery size of 3 MWh, if we introduce re-dispatch every 6 h, CDPCost

decreases by around 60%. Without re-dispatch a decrease of 60% in
CDPCost can be achieved only by increasing the battery size to 9 MWh,
i.e., by 3 -x. If considering the battery investment cost, which according
to Nykvist and Nilsson [25], is 280 € /kWh, the cost for the additional 6
MWh is 1,680,000 €.

Second, we define as total cost the sum of the CDPCost plus the per
day battery investment cost. If considering that the typical battery
lifetime is 20 years, the per day battery investment cost is equal to
0.038 € /kWh based on [25]. Fig. 8 shows the concave form of the total
cost versus the battery size. For small battery sizes the CDPCost prevails
the total cost value, whereas for large battery capacities, battery in-
vestment is the prevailing source of cost. Generally, for all schemes, the
minimum total cost is achieved for small battery sizes. However, re-
dispatch achieves a significant reduction in the minimum total cost
compared to No re-dispatch that can exceed 3 × .

Finding 5: Canceling dispatch plan errors is not possible without re-

dispatch. Specifically, realistic battery sizes cannot remove the dispatch
plan error except if we re-dispatch. With re-dispatch, CDPCost is elimi-
nated for battery sizes that can be applied in practice. Re-dispatching is
less costly and much more efficient than increasing the battery size.

Finding 6: Re-dispatch can achieve a 3 × smaller minimum total
cost (i.e., the sum of the CDPCost plus the per day battery investment
cost) compared to No re-dispatch.

Finding 7: Our re-dispatch scheme can serve as a tool for the DSO to
determine the optimal frequency of re-dispatch for given battery sizes
or the opposite.

7. Conclusions

We have proposed and evaluated a re-dispatch scheme for dis-
tribution grids with DERs and batteries. It applies a receding horizon,
while accounting for computational complexity issues. The update of
the dispatch plan is achieved via CoDistFlow, which efficiently accounts
for the grid and battery losses and the grid constraints. The evaluations
are performed on a real Swiss power distribution grid by using real
data. Our re-dispatch scheme can reduce more than 3 × the total cost
of operations consisting of the daily dispatch-plan tracking cost and the
battery investment cost and it can eliminate the dispatch plan tracking
error for practical battery sizes. Moreover, we show that increasing the
frequency of re-dispatching should be preferred over increasing the
battery size in order to reduce the dispatch plan tracking errors, as it is
less costly. To add to this, if we re-dispatch frequently, the performance
of our proposed scheme is not affected by the computational complexity
of CoDistFlow. Thus, we should re-dispatch as frequently as the
market allows in view of the improvement in performance, i.e., re-
dispatching every 2 h is ideal, as at this frequency, the dispatch plan
tracking costs cancel out.
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Fig. 6. CDPE vs Tfixed for different values of R. Tfixed corresponds to the time
computational complexity of updating the dispatch plan at a re-dispatch round.

Fig. 7. CDPCost vs. battery size. When re-dispatching the cost cancels out for
practical battery sizes.

Fig. 8. Total cost equal to the sum of the CDPCost and the per day battery in-
vestment cost.
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Appendix A. Validation of the resistance-based battery model

In this appendix, we explain how we derive the resistance value of the virtual line of the resistance-based battery model by first estimating
experimentally the round-trip energy losses of the battery. In addition, we perform an experimantal validation of the model.

Round-trip energy losses of the battery. They are determined within a specific experimental session where the battery is controlled to undergo a
series of discharge/charge cycles at different power levels between two predefined state-of-charge (SoC) values. Note that here we use the SoC
instead of the SoE as we use measurements and the SoC can be directly measured by the battery management system. An example of the experiments
is shown in Fig. 9: starting from a resting situation (where voltage and charge dynamics are extinguished), the battery is first discharged at 50 kW
until 25%, and then charged at 50 kW until the initial SoC level. The discrete sum over time of the battery (charging/discharging) power multiplied
by Δt, which should be zero in a lossless battery, gives the round-trip energy losses. After a resting phase, this process is repeated for different
charging/discharging power values and SoC levels.

The experimental round-trip energy losses for the 560 kWh/720 kVA Lithium-ion battery of EPFL [7] are shown in Fig. 10 for different values of
the SoC and charge/discharge power. The values are scaled over the energy exchanged during the round-trip cycle, which was 5% of the energy
capacity. Energy losses take their highest values at low charge/discharge powers and show similar trend for the different SoC levels.

Data-driven computation of the resistance. We model the battery as an ideal power source with a series resistance to capture energy losses, as
shown in Fig. 1. The advantage of this model is that it can be integrated in an optimal power flow problem and capture losses without requiring the
use of binary variables to detect charging or discharging conditions. In the following, we omit the scenario index, d, for the ease of presentation. The
real power output of the battery is Pℓ(t). The power losses on the resistance rℓ are:

=f t r P t
v t

r( ) ( )
( )

.
up ( )

2

(A.1)

As the voltage at the grid node is regulated near 1 pu, we assume =v t t( ) 1,up ( ) in Eq. (A.1). The objective is to design the value of the resistance rℓ
such that the accumulated power losses over time amount to the energy losses identified in the experimental session described above. By denoting
the measured energy losses as ΔE, this reads as:

=
=

P t r t E( ( )) .
t

T

0

2

(A.2)

We use the expression above to estimate a constant value of rℓ:

Fig. 9. Measured active power at the output of the battery’s power converter and battery’s SoC during the experiments to determine the round-trip energy losses.

Fig. 10. Experimental round-trip energy losses for the 560 kWh/720 kVA Lithium-ion battery of EPFL.
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=
=

r E P t t/( ( ) ).
t

T

0

2

(A.3)

Since there are multiple values of ΔE resulting from the experiments at various SoC and power values as reported in Fig. 9, we choose the median
value of rℓ as it was the best performing. Modeling the dependence of R to the SoC and power levels will be considered in future works.

Experimental validation. Validation results are performed considering measurements from a validation data set, not included in the training data
set. The validation effort refers to showing that including the losses estimation in a simple SoC estimation process is beneficial. When considering
losses, the SoC is computed as the integral over time of the charging/discharging power minus the losses on the resistance, all divided by the energy
capacity of the battery. When neglecting losses, rℓ equals 0, and the SoC is the integral over time of the charging/discharging demand divided by the
energy capacity of the battery. The comparison between loss-aware and lossless SoC estimations is given in Fig. 11 versus the SoC measurements
from the battery management system. Loss-aware estimations accurately track the measured SoC, whereas lossless estimations are slowly drifting
away from the measured value over time.
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